Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.04019v1

ABSTRACT

We present a timely and novel methodology that combines disease estimates from mechanistic models with digital traces, via interpretable machine-learning methodologies, to reliably forecast COVID-19 activity in Chinese provinces in real-time. Specifically, our method is able to produce stable and accurate forecasts 2 days ahead of current time, and uses as inputs (a) official health reports from Chinese Center Disease for Control and Prevention (China CDC), (b) COVID-19-related internet search activity from Baidu, (c) news media activity reported by Media Cloud, and (d) daily forecasts of COVID-19 activity from GLEAM, an agent-based mechanistic model. Our machine-learning methodology uses a clustering technique that enables the exploitation of geo-spatial synchronicities of COVID-19 activity across Chinese provinces, and a data augmentation technique to deal with the small number of historical disease activity observations, characteristic of emerging outbreaks. Our model's predictive power outperforms a collection of baseline models in 27 out of the 32 Chinese provinces, and could be easily extended to other geographies currently affected by the COVID-19 outbreak to help decision makers.


Subject(s)
COVID-19
4.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3552677

ABSTRACT

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December 2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous studies have supported an epidemiological hypothesis that cold and dry environments facilitate the survival and spread of droplet-mediated viral diseases, and warm and humid environments see attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the basic reproductive numbers of COVID-19 across provinces and cities in China and show that environmental variables alone cannot explain this variability. Our findings suggest that changes in weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of extensive public health interventions.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.12.20022467

ABSTRACT

A novel coronavirus (COVID-19) was identified in Wuhan, Hubei Province, China, in December 2019 and has caused over 40,000 cases worldwide to date. Previous studies have supported an epidemiological hypothesis that cold and dry (low absolute humidity) environments facilitate the survival and spread of droplet-mediated viral diseases, and warm and humid (high absolute humidity) environments see attenuated viral transmission (i.e., influenza). However, the role of absolute humidity in transmission of COVID-19 has not yet been established. Here, we examine province-level variability of the basic reproductive numbers of COVID-19 across China and find that changes in weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the North Hemisphere) will not necessarily lead to declines in COVID-19 case counts without the implementation of extensive public health interventions.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive
SELECTION OF CITATIONS
SEARCH DETAIL